Algebra Questions for SSC CGL

Algebra Questions for SSC CGL, CHSL, CPO with answers and solutions. Maths MCQs Mock Test for online practice of Competitive Exams.

Quiz : Algebra
Subject : Mathematics
Solved Objective Questions from the previous year papers

Results

#1. If \(\frac{2p}{p^2 -2p + 1}\) =\(\frac14\), the value of \((p+\frac1p\))is

#2. If a, b, c are real numbers and \(a^2 + b^2 + c^ 2\)= 2 (a − b − c) − 3, then the value of a + b + c is

#3. If a =\(\frac{\sqrt{x +2} +\sqrt{x-2}}{\sqrt{x +2} -\sqrt{x-2}}\), then the value of \(({a}^2 - ax\)) is

#4. If \(a^2 + b^2 + c^2\) = ab + bc + ca, then the value of \(\frac{a+ c }{b}\) is

#5. \(9x^2 + 25 − 30x\) can be expressed as the square of

#6. If \(\frac{a}{b} +\frac {b}{a} = 2\), then the value of (a - b) is

#7. If \(\sqrt {y} = 4x\), then \(\frac{x^2}{y}\) is

#8. If a + b = 1, c + d = 1 and a - b = \(\frac{d}{c}\), then the value of \({c^2} -{d^2}\) is :

#9. If \((x − 2)\) is a factor of \(x^2 + 3Qx − 2Q\), then the value of Q is :

#10. If \(a^2 + b^2 = 5ab\), then the value of \((\frac{a^2}{b^2} +\frac{b^2}{a^2})\) is

#11. If \(a^2 − 4a − 1 = 0\), then the value of \(a^2 +\frac{1}{a^2} + 3a - \frac{3}{a}\) is

#12. If \(x^2 − y^2 = 80\) and \(x − y = 8\), then the average of \(x\) and \(y\) is

#13. If \(x - \frac{1}{x} = 5\), then \(x^2 + \frac{1}{x^2}\) is

#14. If \(x^2 + y^2 − 4x − 4y + 8 = 0\), then the value of \(x − y\) is

#15. If \(x^2+ y^2 +2x + 1 = 0\), then the value of \(x^{31} + y^{35}\) is

#16. If \(x − y = 2\) and \(x^2 + y^2 = 20\), then the value of \((x + y) ^2\) is

#17. If \(n +\frac{2}{3}n +\frac {1}{2}n +\frac{1}{7}n = 97\), then the value of n is :

#18. If \({x^x}^\sqrt x\) = \((x\sqrt{x})^x\), then \(x\) equals

#19. If \(p^3 - q^3 = ( p - q) {\{(p + q)^2 - xpq}\}\), then the value of \(x\) is

#20. If \(x + y + z = 6\), then the value of \((x − 1)^3 + (y − 2)^3 + (z − 3)^3\) is

#21. If \(x^2 + y^2 + z^2 = 2 (x + z − 1)\), then the value of \(x^3 + y^3 + z^3\) is

#22. If \(x + y + z = 6\) and \(xy + yz + zx = 10\), then the value of \(x^3 + y^3 + z^3 − 3xyz \) is

#23. The simplified value of the following is : \((\frac{3}{15} a^5 b^6 c^3 \times \frac{5}{9} ab^5 c^4)\) \(\div\frac {10}{27} a^2 bc^3\)

#24. If \(x = 6 + \frac{1}{x}\), then the value of \(x^4 +\frac{1}{x^4}\) is

#25. If \(x (x − 3) = − 1\), then the value of \(x^3 (x^3 − 18)\) is

#26. If \(x + \frac{1}{x} = 3\), then the value of \(\frac{3x^2 + 4x + 3}{x^2 - x + 1}\) is

#27. If \(x^3 + y^3 = 35\) and \(x + y = 5\), then the value of \(\frac {1}{x} +\frac{1}{y}\) will be

#28. If \(x = a (b − c), y = b(c − a)\) and \(z = c (a - b)\), then \((\frac{x}{a})^3 +(\frac{y}{b})^3 +(\frac{z}{c})^3\) =

#29. If a/b = 1/2, then find the value of the expression (2a − 5b)/(5a + 3b)

#30. If \(x^2 + 9y^2 = 6xy\), then \(x : y\) is

#31. If A : B = 1 : 2, B : C = 3 : 4 and C : D = 5 : 6, find D : C : B : A

FINISH
Scroll to Top