Algebra Questions for SSC CGL

Algebra Questions for SSC CGL, CHSL, CPO with answers and solutions. Maths MCQs Mock Test for online practice of Competitive Exams.

Quiz : Algebra
Subject : Mathematics
Solved Objective Questions from the previous year papers

 

Results

#1. If \frac{2p}{p^2 -2p + 1} =\frac14 , the value of (p+\frac1p )is

#2. If \frac{2p}{p^2 -2p + 1} =\frac14 , the value of (p+\frac1p )is

#3. If a, b, c are real numbers and a^2  + b^2 + c^ 2 = 2 (a − b − c) − 3, then the value of a + b + c is

#4. If a =\frac{\sqrt{x +2} +\sqrt{x-2}}{\sqrt{x +2} -\sqrt{x-2}} , then the value of ({a}^2 – ax ) is

#5. If a =\frac{\sqrt{x +2} +\sqrt{x-2}}{\sqrt{x +2} -\sqrt{x-2}} , then the value of ({a}^2 – ax ) is




#6. If a^2  + b^2  + c^2 = ab + bc + ca, then the value of \frac{a+ c }{b} is

#7. If a^2  + b^2  + c^2 = ab + bc + ca, then the value of \frac{a+ c }{b} is

#8. 9x^2  + 25 − 30x can be expressed as the square of

#9. If \frac{a}{b} +\frac {b}{a} = 2 , then the value of (a – b) is

#10. If \frac{a}{b} +\frac {b}{a} = 2 , then the value of (a – b) is




#11. If \sqrt {y} = 4x , then \frac{x^2}{y} is

#12. If \sqrt {y} = 4x , then \frac{x^2}{y} is

#13. If a + b = 1, c + d = 1 and a – b = \frac{d}{c} , then the value of {c^2} -{d^2} is :

#14. If a + b = 1, c + d = 1 and a – b = \frac{d}{c} , then the value of {c^2} -{d^2} is :

#15. If (x − 2) is a factor of x^2  + 3Qx − 2Q , then the value of Q is :




#16. If a^2  + b^2 = 5ab , then the value of (\frac{a^2}{b^2} +\frac{b^2}{a^2}) is

#17. If a^2  + b^2 = 5ab , then the value of (\frac{a^2}{b^2} +\frac{b^2}{a^2}) is

#18. If a^2  − 4a − 1 = 0 , then the value of a^2 +\frac{1}{a^2} + 3a – \frac{3}{a} is

#19. If a^2  − 4a − 1 = 0 , then the value of a^2 +\frac{1}{a^2} + 3a – \frac{3}{a} is

#20. If x^2 − y^2 = 80 and x − y = 8 , then the average of x and y is




#21. If x – \frac{1}{x} = 5 , then x^2 + \frac{1}{x^2} is

#22. If x – \frac{1}{x} = 5 , then x^2 + \frac{1}{x^2} is

#23. If x^2  + y^2 − 4x − 4y + 8 = 0 , then the value of x − y is

#24. If x^2+ y^2 +2x + 1 = 0 , then the value of x^{31} + y^{35} is

#25. If x − y = 2 and x^2  + y^2 = 20 , then the value of (x + y) ^2 is




#26. If n +\frac{2}{3}n +\frac {1}{2}n +\frac{1}{7}n = 97 , then the value of n is :

#27. If n +\frac{2}{3}n +\frac {1}{2}n +\frac{1}{7}n = 97 , then the value of n is :

#28. If {x^x}^\sqrt x = (x\sqrt{x})^x , then x equals

#29. If {x^x}^\sqrt x = (x\sqrt{x})^x , then x equals

#30. If p^3 – q^3  = ( p – q) {\{(p + q)^2 – xpq}\} , then the value of x is




#31. If p^3 – q^3  = ( p – q) {\{(p + q)^2 – xpq}\} , then the value of x is

#32. If x + y + z = 6 , then the value of (x − 1)^3  + (y − 2)^3  + (z − 3)^3 is

#33. If x^2  + y^2  + z^2 = 2 (x + z − 1) , then the value of x^3  + y^3  + z^3 is

#34. If x + y + z = 6 and xy + yz + zx = 10 , then the value of x^3  + y^3  + z^3 − 3xyz  is

#35. The simplified value of the following is : (\frac{3}{15} a^5 b^6 c^3 \times \frac{5}{9} ab^5 c^4) \div\frac {10}{27} a^2 bc^3




#36. The simplified value of the following is : (\frac{3}{15} a^5 b^6 c^3 \times \frac{5}{9} ab^5 c^4) \div\frac {10}{27} a^2 bc^3

#37. If x = 6 + \frac{1}{x} , then the value of x^4 +\frac{1}{x^4} is

#38. If x = 6 + \frac{1}{x} , then the value of x^4 +\frac{1}{x^4} is

#39. If x (x − 3) = − 1 , then the value of x^3 (x^3 − 18) is

#40. If x + \frac{1}{x} = 3 , then the value of \frac{3x^2 + 4x + 3}{x^2 – x + 1} is




#41. If x + \frac{1}{x} = 3 , then the value of \frac{3x^2 + 4x + 3}{x^2 – x + 1} is

#42. If x^3 + y^3 = 35 and x + y = 5 , then the value of \frac {1}{x} +\frac{1}{y} will be

#43. If x^3 + y^3 = 35 and x + y = 5 , then the value of \frac {1}{x} +\frac{1}{y} will be

#44. If x = a (b − c), y = b(c − a) and z = c (a – b) , then (\frac{x}{a})^3 +(\frac{y}{b})^3 +(\frac{z}{c})^3 =

#45. If x = a (b − c), y = b(c − a) and z = c (a – b) , then (\frac{x}{a})^3 +(\frac{y}{b})^3 +(\frac{z}{c})^3 =




#46. If a/b = 1/2, then find the value of the expression (2a − 5b)/(5a + 3b)

#47. If x^2  + 9y^2 = 6xy , then x : y is

#48. If A : B = 1 : 2, B : C = 3 : 4 and C : D = 5 : 6, find D : C : B : A

Previous
FINISH
Scroll to Top