If a right circular cone of height 24 cm has a volume of 1232 cm3 ,then the total surface area of the cone is (use π=22/7)

Options
a) 704 cm2
b) 806 cm2
c) 904 cm2
d) 608 cm2

Solution

As per question
Volume of cone = \frac{1}{3} \times \pi \times r^2 \times h
Total curved surface area = πrl+πr2
l2 = r2 + h2
r = radius
h = height
l = slant height
Volume of cone = \frac{1}{3} \times \pi \times r^2 \times h
1232 = \frac{1}{3} \times \frac{22}{7} \times r^2 \times 24
r^2 = \frac{1232 \times 3 \times 7}{22 \times 24}
r2 = 49
r = 7
l2 = r2 + h2
l2 = 72 + 242
l2 = 49 + 576
l2 = 625
l = \sqrt{625}
l = 25

Total curved surface area = πrl+πr2
Total curved surface area = \frac{22}{7} \times 7 \times 25 + \frac{22}{7} \times 7 \times 7
Total curved surface area = 22 x 25 + 22 x 7
Total curved surface area = 550 + 154 = 704 cm2

Answer: a) 704 cm2

Scroll to Top