SSC CHSL ALGEBRA QUESTIONS WITH SOLUTIONS

SSC CHSL Algebra Questions with solutions. Solved Algebra question answer with short tricks are very useful for upcoming SSC CGL, CHSL and other Competitive Exams.

SSC CHSL ALGEBRA QUESTIONS

Q.1: If a + b = p, ab = q, then (a4 + b4 ) is equal to:
(A) p4 – 4p2q + q2
(B) p4 – 4p2q2 + 2q2
(C) p4 – 2p2q2 + q2
(D) p4 – 4p2q + 2q2

Answer
Ans : (D) p4 – 4p2q + 2q2
a + b = p , ab = q
(a + b)2 = p2
a2 + 2ab + b2 = p2
a2 + b2 = p2 – 2q
(a2 + b2)2 = (p2 – 2q)2
a4 + b4 + 2a2b2 = p4 – 4p2q + 4q2 [ab = q, a2 b2 = q2]
a4 + b4 = p4 – 4p2q + 2q2

Q.2: If (x +\frac 1x)^3 = 27 , then what is the value of (x^2 +\frac {1}{x^2}) ? Given the x is real.
(A) 9
(B) 25
(C) 7
(D) 11

Answer
Ans : (C) 7
(x +\frac 1x)^3 = 27
x +\frac 1x = (27)^{1/3} = 3
x^2 +\frac {1}{x^2} + 2 = 9
x^2 +\frac {1}{x^2} = 9 - 2 = 7

Q.3: If x -\frac 2x = 4 , then what will be the value of x^2 + \frac {4}{x^2} ?
(A) 18
(B) 8
(C) 12
(D) 20

Answer
Ans : (D) 20
({x -\frac 2x)^2} = 4
x^2 +\frac {4}{x^2} - 2\times2 = 16
x^2 +\frac {4}{x^2} = 16 + 4 = 20

Q.4: If \sqrt{x} + \frac {1} {\sqrt x} = \sqrt 6 , then the value of x^6 + \frac {1}{x^6} will be:
(A) 2712
(B) 2502
(C) 2270
(D) 2702

Answer
Ans : (D) 2702
\sqrt{x} + \frac {1} {\sqrt x} = \sqrt6
(\sqrt{x} + \frac {1} {\sqrt x})^2 = (\sqrt6)^2
x +\frac 1x +2 = 6
x +\frac 1x = 4
(x +\frac 1 x)^2 = (4)^2
x^2 +\frac {1}{x^2} = 16 - 2 = 14
(x^2 +\frac {1}{x^2})^3 = (14)^3
x^6 +\frac {1}{x^6} + 3x^2\times\frac {1}{x^2}\times (x^2 + (\frac {1}{x^2}) = 2744
x^6 +\frac {1}{x^6} = 2744 - 42 = 2702

Q.5: If x2 + 1 – 2x = 0, x > 0 , then x2(x2 – 2) =_______.
(A) 0
(B) -1
(C) 1
(D) \sqrt2

Answer
Ans : (B) -1
x2 + 1 – 2x = 0
x > 0
x = 1, so 1 + 1 – 2 = 0
Put x = 1 in x2(x2 – 2)
1 (1 – 2)
= -1

Q.6: If x^2 -3\sqrt2x + 1 =0 , then what is the value of x^3 + (\frac {1}{x^3}) ?
(A) 15\sqrt6
(B) 30\sqrt6
(C) 45\sqrt2
(D) 30\sqrt2

Answer
Ans : (C) 45\sqrt2
x^2 - 3\sqrt2x + 1 = 0
x - 3\sqrt2 +\frac1x = 0
x +\frac 1x =3\sqrt2
(x +\frac 1x)^3 = (3\sqrt2)^3
x^3 +\frac {1}{x^3} + 3x\times\frac1x\times (x +\frac1x) = 54\sqrt2
x^3 +\frac{1}{x^3} = 54\sqrt2 - 9\sqrt2
= 45\sqrt2

Q.7: If x – y = 4 and xy = 3 , then what is the value of x3 – y3 ?
(A) 88
(B) 100
(C) 64
(D) 28

Answer
Ans : (B) 100
x – y = 4
(x – y)3 = 43
x3 – y3 – 3xy (x – y) = 64 [Put xy = 3, x – y =4]
x3 – y3 – 3 x 3 x 4 = 64
x3 – y3 = 64 + 36 = 100

Q.8: If x -\frac 1x = 2\sqrt2 , then what will be the value of x^3 -\frac {1}{x^3} ?
(A) 12\sqrt2
(B) 10\sqrt2
(C) 20\sqrt2
(D) 22\sqrt2

Answer
Ans : (D) 22\sqrt2
x -\frac 1x =2\sqrt2
(x -\frac 1x)^3 = (2\sqrt2)^3
x^3 -\frac {1}{x^3} - 3\times x\times\frac 1x (x -\frac1x) = 16\sqrt2
x^3 -\frac {1}{x^3} - 3\times 2\sqrt2 = 16\sqrt2
x^3 -\frac {1}{x^3} = 16\sqrt2 + 6\sqrt2
= 22\sqrt2

Q.9: If x + 2y = 19 and x3 + 8y3 = 361 , then xy is equal to:
(A) 58
(B) 56
(C) 55
(D) 57

Answer
Ans : (D) 57
x + 2y = 19
(x + 2y)3 = (19)3
x3 + 8y3 + 6xy (x + 2y) = 6859
x3 + 8y3 + 6xy x 19 = 6859
6xy x 19 = 6859 – 361 = 6498
xy =\frac {6498}{19\times6}
xy = 57

Q.10: If (x^2 + \frac{1}{49x^2}) = 15\frac 57 , then what is the value of (x +\frac{1}{7x}) ?
(A) 4
(B) \pm 7
(C) \pm 4
(D) 7

Answer
Ans : (C) \pm 4
(x^2 + \frac{1}{49x^2}) = 15\frac57
(x^2 + \frac{1}{7x})^2 + 2\times x\times \frac {1}{7x} =\frac{110}{7} + \frac27
(x + \frac{1}{7x})^2 = \frac{112}{7} = 16
x + \frac{1}{7x} =\pm 4

SSC CHSL Algebra Questions with solutions for Competitive Exams

Q.11: If x + y = 27 and x2 + y2 = 425 , then the value of (x – y)2 will be:
(A) 121
(B) 225
(C) 169
(D) 144

Answer
Ans : (A) 121
x + y = 27
x2 + y2 = 425
(x + y)2 = (27)2
x2 + y2 + 2xy = 729
2xy = 729 – 425
2xy = 304
(x – y)2 = x2 + y2 – 2xy
= 425 – 304
(x – y)2 = 121

Q.12: If 3x + y = 12 and xy = 9 , then the value of (3x – y) is:
(A) 6
(B) 5
(C) 3
(D) 4

Answer
Ans : (A) 6
3x + y = 12
xy = 9
put x = 3, y = 3 Both Equation
So its satify
3x – y = 3 x 3 – 3
= 9 – 3 = 6

Q.13: If a2 + b2 + c2 = 576 and (ab + bc + ca) = 50 , then what is the value of (a + b + c), if (a+b+c) < 0 ?
(A) -24
(B) \pm 24
(C) \pm 26
(D) -26

Answer
Ans : (D) -26
(a + b + c)2 = a2 + b2 +c2 + 2 (ab + bc + ca)
576 + 2 x 50
(a + b + c)2 = 676
a + b + c = \pm 26
a + b + c < 0
so a+b+c = -26

Q.14: If x +\frac{1}{3x} = 5 , then the value of 27x^3 +\frac{1}{x^3} will be:
(A) 3024
(B) 3420
(C) 3042
(D) 3240

Answer
Ans : (D) 3240
x +\frac{1}{3x} = 5
3x +\frac{1}{x} = 15 [ Multiply by 3]
(3x +\frac{1}{x})^3 = 15^3
27x^3 +\frac{1}{x^3} + 135 = 3375
27x^3 +\frac{1}{x^3} = 3375 - 135
=3240

Q.15:If 3x + 5y = 14 and xy = 6 , then what is the value of 9x2 + 25y2 ?
(A) 182
(B) 16
(C) 14
(D) 20

Answer
Ans : (B) 16
(3x + 5y)2 = (14)2
9x2 + 25y2 + 30xy = 196
9x2 + 25y2 + 30 x 6 = 196
9x2 + 25y2 = 196 – 180
9x2 + 25y2 = 16

Q.16: If a – b = 7 and a2 + b2 = 169 where a,b >0 , then the value of 3 a+b is:
(A) 41
(B) 46
(C) 38
(D) 44

Answer
Ans : (A) 41
a – b = 7
(a – b)2 = 72
a2 + b2 – 2ab = 49
169 – 2ab = 49
2ab = 169 – 49
2ab = 120
ab = 60 [12 x 5]
a = 12, b = 5
3a + b
= 3 x 12 + 5
= 41

Q.17: If a + 5b = 25 and ab = 20 , then one of the values of (a-5 b) is:
(A) 16
(B) 15
(C) 13
(D) 14

Answer
Ans : (B) 15
a + 5b = 25, ab = 20
Put a = 20
b = 1
so a – 5b
= 20 – 5 x 1 = 15

Q.18: If \sqrt {x} + \frac{1}{x} =2\sqrt{3} , then what will be the value of x^4 +\frac{1}{x^4} ?
(A) 10406
(B) 10402
(C) 9602
(D) 9606

Answer
Ans : (C) 9602
\sqrt {x} +\frac{1}{x} = 2\sqrt3
(\sqrt {x} +\frac{1}{x})^2 = (2\sqrt3)^2
x +\frac{1}{x} + 2 = 12
x +\frac{1}{x} = 10
x^2 + \frac{1}{x^2} = 100 - 2 = 98
x^4 + \frac{1}{x^4} = 98^2 - 2
= 9604 – 2
x^4 +\frac{1}{x^4} = 9602

Q.19: If (7x – 10y) = 8 and xy = 5 , then what is the value of 49x2 + 100y2 ?
(A) 632
(B) 623
(C) 746
(D) 764

Answer
Ans : (D) 764
7x – 10y = 8
(7x – 10y)2 = (8)2
49x2 + 100y2 – 140xy = 64
49x2 + 100y2 = 64 + 140xy
= 64 + 140xy
= 64 + 140 x 5
= 764

Q.20: If x^2 +(4 - \sqrt {3})x - 1 = 0 , then what is the value of x^2 +\frac{1}{x^2} ?
(A) 21- 8\sqrt3
(B) 17- 8\sqrt3
(C) 9- 8\sqrt3
(D) 21- 12\sqrt3

Answer
Ans : (A) 21- 8\sqrt3
x^2 +(4 -\sqrt3)x - 1 = 0
\div x Both side
x +(4 -\sqrt{3}) - \frac1x = 0
x -\frac1x = \sqrt3 - 4
square Both side
(x -\frac1x)^2 = (\sqrt 3 - 4)^2
x^2 +\frac{1}{x^2}  - 2 = 3 + 16 - 8\sqrt3
x^2 +\frac{1}{x^2} = 21 - 8\sqrt3

SSC CHSL Algebra Questions with solutions for Competitive Exams

Q.21: If x^2 +\frac{1}{x^2} = 83, x > 0 , then the value of x^3 +\frac{1}{x^3} is:
(A) 675
(B) 756
(C) 746
(D) 576

Answer
Ans : (B) 756
x^2 +\frac{1}{x^2} = 83
x^2 +\frac{1}{x^2} - 2 = 83 - 2
(x -\frac{1}{x})^2 = 81
x -\frac{1}{x} = 9
(x -\frac{1}{x})^3 = 9^3
x^3 -\frac{1}{x^3} -3x \frac1x (x -\frac1x) = 729
x^3 -\frac{1}{x^3} = 729 + 27
= 756

Q.22: If x +\frac1x = \sqrt{13} , then one of the values of x^3 -\frac{1}{x^3} is:
(A) 36
(B) 32
(C) 4\sqrt{13}
(D) 4\sqrt{11}

Answer
Ans : (A) 36
x +\frac1x = \sqrt{13}
x^2 +\frac{1}{x^2} + 2 = 13
x^2 +\frac{1}{x^2} = 11
x^2 +\frac{1}{x^2} - 2 = 11 - 2
x^2 +\frac{1}{x^2} - 2 = 9
(x -\frac{1}{x})^2 = 9
x -\frac1x = 3
x^3 +\frac{1}{x^3} - 3\times3 = 27
x^3 -\frac{1}{x^3} = 27 + 9
= 36

Q.23: The coefficient of x3 y in (x – 2y) x (5x + y)3 is:
(A) -150
(B) 75
(C) -175
(D) 250

Answer
Ans : (C) -175
(x – 2y) x (5x + y)3
(x – 2y) x [ 125x3 + y3 + 15xy (5x + y)
(x – 2y) x [ 125x3 + y3 + 75x2y + 15xy2 ]
coefficient of x3y
= 75x3 – 250x3y
= -175x3y
so coefficient of x3y
= -175

Q.24: If 9x2 – 6x + 1 = 0 , then the value of 27x3 + (27x3)-1 will be:
(A) 1
(B) 4
(C) 2
(D) 8

Answer
Ans : (C) 2
9x2 – 6x + 1 = 0
27x3 + (27x3)-1
9x2 – 6x + 1 = 0
(3x – 1)2 = 0
3x – 1 = 0
3x = 1
x =\frac13
put x =\frac13
27x^3 +\frac{1}{27^3}
27\times\frac{1}{27} +\frac{{1}\times{27}}{{27}\times{1}}
= 1 + 1 = 2

Q.25: What is the coefficient of y2 in the expansion of (\sqrt2y^2 - 5\sqrt3)^3 ?
(A) 30\sqrt3
(B) -225\sqrt2
(C) -30\sqrt3
(D) 225\sqrt2

Answer
Ans : (D) 225\sqrt2
(\sqrt2y^2 - 5\sqrt3)^3
(a – b)3 = a3 – b3 – 3ab(a – b)
(\sqrt2y^2)^3 - (5\sqrt3)^3 - 3\sqrt2y^2\times5\sqrt3 (\sqrt2y^2 - 5\sqrt3)
केवल y2 का गुणांक लेने पर
= -3\sqrt2y^2 \times 5\sqrt3\times - 5\sqrt3
= +225\sqrt2y^2
y2 का गुणांक = 225\sqrt2

Q.26: If a + b + c = 2 and ab + bc + ca = -1 , then the value of a3 + b3 + c3 – 3abc is:
(A) 5
(B) 10
(C) 2
(D) 14

Answer
Ans : (D) 14
a + b + c = 2
(a + b + c)2 = ( 2 )2
a2+b2+c2 + 2(ab + bc + ca) = 4
a2+b2+c2 + 2 x(-1) = 4
a2+b2+c2 = 6
a3+b3+c3 – 3abc = (a+b+c) [(a2+b2+c2) – (ab+bc+ca)]
= 2[6 – (-1)]
= 2 x 7 = 14

Q.27: If x +\frac{1}{15x} =3 , then the value of 9x^3 +\frac{1}{375x^3} will be:
(A) 237.6
(B) 273.6
(C) 367.2
(D) 376.2

Answer
Ans : (A) 237.6
x +\frac{1}{15x} =3
(x +\frac{1}{15x})^3 =(3)^3
x^3 +\frac{1}{3375x^3} +3x\times\frac{1}{15x} \times3 = 27
x^3 +\frac{1}{3375x^3} +\frac35 = 27
x^3 +\frac{1}{3375x^3} = 27 -\frac35 =\frac{132}{5}
9 से गुणा Both side
9x^3 +\frac{1}{375x^3} =\frac{132}{5}\times 9
9x^3 +\frac{1}{375x^3} =\frac{1188}{2} = 237.6

Q.28: If a+b+c = 11 and ab+bc+ca = 15 , then what is the value of a3+b3+c3 – 3abc ?
(A) 386
(B) 836
(C) 368
(D) 638

Answer
Ans : (B) 836
a+b+c = 11
(a+b+c)2 = 112
a2+b2+c2 + 2 (ab+bc+ca) = 121
a2+b2+c2 + 2 x 15 = 121
a2+b2+c2 = 121 – 30
a2+b2+c2 = 91
a3+b3+c3-3abc =(a+b+c) [(a2+b2+c2 )-(ab+bc+ca)]
= 11[91 – 15]
= 11 x 76
a3+b3+c3-3abc = 836

Q.29: If a+b+c = 5, a2+b2+c2 = 27, and a3+b3+c3 = 125 , then the value of \frac{abc}{5} is:
(A) -5
(B) -1
(C) 5
(D) 1

Answer
Ans : (B) -1
a+b+c = 5
(a+b+c)2 = (5)2
a2+b2+c2 +2(ab+bc+ca) = 25
27 + 2(ab+bc+ca) = 25
ab+bc+ca = -1
a3+b3+c3 -3abc = (a+b+c) [(a2+b2+c2 -(ab+bc+ca)
125 – 3abc = 5 [27 – (-1)
= 5 x 28
125 – 3abc = 140
3abc = -15
abc = -5
\frac{abc}{5} = -1

Q.30: If x4 + x-4 = 47, x>0 , then the value of (2x – 3)2 is:
(A) 9
(B) 5
(C) 3
(D) 7

Answer
Ans : (B) 5
x^4 + \frac{1}{x^4} = 47
x^4 + \frac{1}{x^4} + 2 = 47+ 2
(x^2 + \frac{1}{x^2})^2 = 49
x^2 + \frac{1}{x^2} = 7
x^2 + \frac{1}{x^2} + 2 = 7+2
(x + \frac{1}{x})^2 = 9
x +\frac1x = 3
x2 + 1 = 3x
4x2 – 12x = -4
(2x – 3)2
= 4x2 + 9 – 12x
4x2 – 12x + 9
-4 + 9 = 5

SSC CHSL Algebra Questions with solutions for Competitive Exams

Q.31: If a-\frac{24}{a} = 5 , where a > 0, then the value of a^2 +\frac{64}{a^2} is:
(A) 45
(B) 60
(C) 65
(D) 56

Answer
Ans : (C) 65
a-\frac{24}{a} = 5
Put x = 8 its satisfy this equation
So a^2-\frac{64}{a^2}
64 +\frac{64}{64}
64 + 1 = 65

Q.32: If x = 555, y = 556 and z = 557 , then find the value of x3+y3+z3 – 3xyz.
(A) 5002
(B) 5008
(C) 5006
(D) 5004

Answer
Ans : (D) 5004
x3+y3+z3 – 3xyz = \frac12 (x+y+z)[(x – y)2 +(y – z)2 +(z – x)2 ]
\frac12\times 1668\times[1+1+4]
= 3 x 1668
= 5004

Q.33: If 3x-2y+3=0 , then what will be the value of 27x3+54xy+30-8y3 ?
(A) 57
(B) -57
(C) -27
(D) 3

Answer
Ans : (D) 3
3x-2y+3=0
3x-2y=-3
(3x-2y)3 = (-3)3
27x3 – 8y3+54xy =-27
27x3 – 8y3 =-27 – 54xy
27x3 +54xy+30 -8y3
-27-54xy+54xy+30
= 30-27 = 3

Thanks for Study the SSC CHSL Algebra Questions with solutions

Algebra Questions with solutions in Hindi for SSC CHSL Exams

Maths Practice Set for Competitive Exams

Number System Questions with Answers

Percentage Questions with Answers

Simple and Compound Interest Questions with Answers

Time and Work Questions with Answers

Mensuration Questions with Answers

Algebra Questions with Answers

Trigonometry Questions with Answers

Pipe and Cistern Questions

1 thought on “SSC CHSL ALGEBRA QUESTIONS WITH SOLUTIONS”

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top