Trigonometry Questions for Competitive Exams

Trigonometry Questions with solution for Competitive Exams. Previous year Exam Question with official answer and detail explanation with short tricks. The Questions are as per SSC CGL and CHSL Exam Syllabus and Pattern. The below 1-18 questions are from the all shifts of SSC CHSL Exam.

Trigonometry Questions with Solution

Q.1: If (sin A – cos A) = 0 , then what is the value of cot A ?
(A) \frac{\pi}{6}
(B) 0
(C) 1
(D) \frac{\pi}{4}

Answer
Ans : (C) 1
(sin A – cos A) = 0
sin A = cos A
\frac{cos A}{sin A} = 1
cot A = 1

Q.2: If cosec\theta=\frac{41}{9} and \theta is an acute angle, then the value of 5 tan\theta will be:
(A) \frac 98
(B) \frac {11}{8}
(C) \frac {13}{4}
(D) \frac 78

Answer
Ans : (A) \frac 98
cosec\theta=\frac{41}{9}
sin\theta=\frac{9}{41}
पाइथागोरस प्रमेय से
BC2 = 412 – 92
BC =\sqrt{1600} = 40
ATQ 5 tan\theta = 5\times \frac{9}{40}
=\frac98

Q.3: Solve the following equation and find the value of \theta.
3 cot\theta + tan \theta -2\sqrt3 = 0,0 <\theta < 90^o
(A) 60o
(B) 30o
(C) 15o
(D) 45o

Answer
Ans : (A) 60o
3 cot\theta + tan \theta -2\sqrt3 = 0
Put \theta = 60 its satisfy
3 x cot60 + tan60 -2 \sqrt{3}
3\times\frac{1}{\sqrt3} +\sqrt3 - 2\sqrt3
\frac{3}{\sqrt3} +\sqrt3 - 2\sqrt3
\frac{6}{\sqrt3} -2\sqrt3
\frac {6-6}{\sqrt3} = \frac{0}{\sqrt3} = 0
so \theta = 60

Q.4: In \triangle ABC , \angle A = 90^0, AB = 20cm and BC = 29cm. What is the value of (sinB -cotC) ?
(A) \frac{189}{580}
(B) -\frac {9}{29}
(C) \frac{9}{29}
(D) -\frac{189}{580}

Answer
Ans : (D) -\frac{189}{580}

Trigonometry Questions for Competitive Exams

Q.5: If tanx = cot(48o + 2x), and 0o <x <90o , then what is the value of x ?
(A) 14o
(B 12o
(C) 21o
(D) 16o

Answer
Ans : (A) 14o
tan x = cot (48 + 2x)
tanx = tan (90 – (48 + 2x)
x = 90 -(48 + 2x)
x = 90 – 48 – 2x
3x = 42
x = 14

Q.6: If 7 sin^2\theta + 3cos^2\theta = 4,0^o <\theta <90^o , then the value of \theta will be:
(A) 45o
(B) 30o
(C) 60o
(D) 75o

Answer
Ans : (B) 30o
7 sin^2\theta + 3cos^2\theta = 4
4 sin^2\theta + 3sin^2\theta +3cos^2\theta= 4
4 sin^2\theta + 3(sin^2 \theta + cos^2\theta)= 4
4sin^2\theta + 3\times1 = 4
4sin^2\theta = 4 - 3 = 1
sin^2\theta =\frac 14
sin\theta =\frac 12
\theta = 30^o

Q.7: Find the value of \theta , If sec2 sec^2\theta +(1 -\sqrt3)tan\theta -(1 +\sqrt3)=0, where \theta is an acute angle.
(A) 30o
(B) 15o
(C) 60o
(D) 45o

Answer
Ans : (C) 60o
sec^2\theta +(1 -\sqrt3) tan\theta -(1 +\sqrt3) =0
put \theta = 60^o (By option)
sec^2(60) + (1 -\sqrt3) tan 60 - (1 +\sqrt3)
4 +(1 - \sqrt3) \sqrt3 - (1 + \sqrt3)
4 +\sqrt3 - 3 - 1 -\sqrt3
4 – 4 = 0
So \theta = 60

Q.8: If cos\theta =\frac{7}{3\sqrt6} and \theta is an acute angle, then the value of 27 sin^2\theta -\frac 32 is:
(A) 15
(B) 12
(C) 1
(D) 9

Answer
Ans : (C) 1

Trigonometry Questions for Competitive Exams

Q.9: In a triangle ABC , right-angled at C, if sec A =\frac{13}{5} , then find the value of \frac{1+ sinA}{cosB}.
(A) \frac{18}{5}
(B) 5
(C) \frac32
(D) \frac{25}{12}

Answer
Ans : (D) \frac{25}{12}

Trigonometry Questions for Competitive Exams

Q.10: If sin\theta + cosec \theta = 7 , then what is the value of sin^3\theta + cosec^3\theta ?
(A) 322
(B) 382
(C) 367
(D) 350

Answer
Ans : (A) 322
sin\theta + cosec \theta = 7
(sin\theta + cosec \theta)^3 = 7^3
sin^3\theta + cosec^3 \theta +3sin\theta cosec\theta\times7 = 343
sin^3\theta + cosec^3 \theta +3\times7 = 343 [Sin\theta\times Cosec\theta = 1]
sin^3\theta + cosec^3\theta = 343 - 21 = 322
Trigonometry Questions for Competitive Exams

Q.11: If 3 cot A = 4 tan A , and A is an acute angle, then what will be the value of Sec A ?
(A) \frac{\sqrt7}{2}
(B) \frac{1}{\sqrt3}
(C) \frac12
(D) \frac{\sqrt21}{3}

Answer
Ans : (A) \frac{\sqrt7}{2}

Q.12: What is the value of \frac{cos^220^o + cos^270^o}{sin^290^o} -tan^245^o ?
(A) -1
(B) 0
(C) -2
(D) 1

Answer
Ans : (B) 0
\frac{cos^220^o + cos^270^o}{sin^290^o} -tan^245^o
\frac{1}{1} -1 [Cos220 + Cos270 = 1, tan 45 = 1]
= 0

Q.13: If \sqrt{13} Sin \theta = 2 , then the value of \frac{3tan\theta +\sqrt{13}Sin\theta}{\sqrt{13}Cos \theta-3 tan \theta} is:
(A) 5
(B) \frac 12
(C) 3
(D) 4

Answer
Ans : (D) 4

Q.14: In a right-angled triangle ABC right angled at C, Sin A = Sin B. What is the value of Cos A ?
(A) 1
(B) \frac{\sqrt3}{2}
(C) \frac 12
(D) \frac{1}{\sqrt2}

Answer
Ans : (D) \frac{1}{\sqrt2}
Sin A = Sin B
A = B = 45 Satisfy
Cos A = Cos 45
= \frac{1}{\sqrt2}

Q.15: If 5 Cos \theta = 4 Sin \theta , 0^o \leq \theta \leq 90^o , then what will be the value of Sec \theta ?
(A) \frac{\sqrt{41}}{4}
(B) \frac{\sqrt{41}}{16}
(C) \frac{\sqrt{41}}{5}
(D) \frac35

Answer
Ans : (A) \frac{\sqrt{41}}{4}

Q.16: The value of \frac{Cos 8^o Cos 24^o Cos 60^o Cos 66^o Cos 82^o}{Sin 82^o Sin 66^o Sin 60^o Sin 8^o Sin 24^o} is:
(A) \frac{1}{\sqrt2}
(B) \frac{1}{\sqrt3}
(C) 1
(D) 0

Answer
Ans : (B) \frac{1}{\sqrt3}
Cos 8o Cos 82o = 1
Cos 24o Cos 60o = 1
Sin 82o Sin 8o = 1
Sin 66o Sin 24o = 1
so \frac{Cos 66^o}{Sin 60^o}
Cot 60=\frac{1}{\sqrt3}

Q.17: If Sin B =\frac{9}{41} , then what is the value of Cot B, where 0o <B<90o ?
(A) \frac{9}{41}
(B) \frac{41}{9}
(C) \frac{9}{40}
(D) \frac{40}{9}

Answer
Ans : (D) \frac{40}{9}

Q.18: If tan\theta =\frac43 , then the value of \frac{9 Sin\theta + 12 Cos \theta}{27 Cos\theta -20sin \theta} will be equal to:
(A) 36
(B) 100
(C) 18
(D) 72

Answer
Ans : (D) 72

Thanks for study the Trigonometry Questions for Competitive Exams in English

Maths Practice Set for Competitive Exams

Number System Questions with Answers

Percentage Questions with Answers

Simple and Compound Interest Questions with Answers

Time and Work Questions with Answers

Mensuration Questions with Answers

Algebra Questions with Answers

Trigonometry Questions with Answers

Pipe and Cistern Questions

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top